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Abstract. Recent development of intermittency in the Ising model is reviewed. By means of various real-
ization, the classical spin model is adopted to study the particle number fluctuations and the intermittent
behavior. The analytical expressions in one dimension are obtained, both for the models with and without
an external field. The onset of intermittency in the Ising model is more likely a characteristic of decoupling
into one-dimensional subsystems.

I Introduction

Recently there has been a growing interest in intermit-
tent behavior, both in particle physics and in statistical
mechanics [1]. The large fluctuation in multiplicity den-
sity observed in high energy collisions seems to indicate
that the usual statistical fluctuations are insufficient to
describe the phenomena. It is then interesting to compare
the fluctuations in statistical models with those shown by
experimental data. The Ising model provides the simplest
tool for such investigation, and one focus of studies is to
determine whether it will show intermittency [2]. From an
intuitive point of view, intermittency at the critical point
of the Ising model seems natural, since correlations occur
on all scales. However, the relationship between the inter-
mittency and phase transition is still unclear. This study
is devoted to clarification of the onset of intermittency in
the Ising model.

The study of Ising intermittency can be summarized
as follows: At first, one has a model of spins, in which each
spin Si takes the values of ±1. Introducing a transforma-
tion between spins Si and multiplicities ni, e.g.,

ni =
1
2
(1 + Si) , (1)

a model of particle number fluctuation can be realized in
the model of spins, i.e., the model of spins becomes a
model of particle production. To study the intermittent
behavior, the whole phase space of the multiplicities (or
correspondingly the whole lattice of the spins) is further
divided into blocks of size L and the block multiplicity
km is defined as the sum of the multiplicity ni within the
block m. Thus,

km =
∑

i ∈ Bm

ni , (2)

where Bm denotes the block m. One calculates the qth
factorial moments Fq defined as

Fq(L) =
〈km(km − 1) · · · (km − q + 1)〉

〈km〉q , (3)

where 〈· · ·〉 denotes the average taken first over the blocks
and then over the ensemble. Finally, one determines if the
factorial moments Fq increase as the size L of the blocks is
reduced. If they do, one can say the model shows intermit-
tency. Strictly speaking, intermittency implies more than
an increase in factorial moments with a decrease in phase
space. A linear behavior on the log-log scale is also im-
plied.

In Sect. II the Ising model without an external field is
discussed. In Sect. III the influence of an external magnetic
field is discussed. The conclusion is in Sect. IV.

II Ising model without external field

This study begins with the Ising model on a hypercubic
lattice with nearest-neighbor interactions. The Hamilto-
nian is given as

H = −ε
∑
〈i,j〉

Si Sj , (4)

where the sum over 〈i, j〉 is over all nearest neighbors, the
spins Si’s take the values of ±1, and ε denotes the inter-
action strength. Let the linear size of the lattice be R, the
total number of the lattice sites N = Rd for the hypercu-
bic lattice in d dimension. There are three parameters in
this model: the linear lattice size R, the dimension d, and
the product βε, where β is the inverse temperature.

To connect with the phenomena of multiparticle pro-
duction, the N -site lattice is considered to be the overall
phase space for the particle production, and a relationship
should be established between spin Si and multiplicity ni.
There is no unique way to do this. In the following sub-
sections, various kinds of realizations for such a relation-
ship are discussed.
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A Spin-up as multiplicity

The lattice gas interpretation is usually adopted to pro-
vide a connection between spin and multiplicity. Spin-up
Si = +1 and spin-down Si = −1 are mapped into the
multiplicity ni = 1 and ni = 0, respectively. This can be
simply presented by

ni =
1
2
(1 + Si) . (5)

Due to the Z(2) symmetry of the Ising model, the re-
versed realization of spin-down as particle and spin-up as
vacancy does not lead to new physics, which will be shown
explicitly later.

Above the phase transition temperature, the average
spin 〈Si〉 = 0 and the total spin 〈S〉 = 0. The corre-

sponding multiplicity 〈ni〉 =
1
2

and the total multiplicity

〈n〉 =
N

2
are determined by the total number of sites N .

Note that in the above notations the average spin 〈Si〉 and
〈ni〉 are the ensemble averages taken at the lattice site i.

The multiplicity distribution P (n) is defined as the
probability of having n particles in production, or accord-
ingly the probability of having exactly n spins pointing up,
regardless their locations on the lattice. The Z(2) symme-
try implies that P (n) is symmetrical to the reflection at
n = 〈n〉, i.e.,

P (n1) = P (n2) , for n1 + n2 = N = 2〈n〉 . (6)

This can be easily observed, since each configuration is
equally probable to that with spin-ups and spin-downs
switching into each other; and these two configurations
are related by n1 + n2 = N which in the symmetric phase
equals to 2〈n〉.

Below the phase transition temperature, the Z(2) sym-
metry is explicitly broken. The choices of spin-up or spin-
down as particles would lead to different phenomena. How-
ever, the corresponding physics are easily distinguishable
from each other. To choose the direction of total spin as
the definition of particle always leads to a total multiplic-

ity larger than
N

2
, while the other choice always leads

to a lesser total multiplicity. Around the phase transition

point, 〈Si〉 << 1 and 〈n〉 ∼ N

2
; this is the case of partic-

ular interest. The reflection symmetry of P (n) at n = 〈n〉
is still a good approximation.

In high energy collisions the total multiplicity increases
with an increasing incident energy. In the model this fea-
ture is simulated by increasing the lattice sites N with
additional energy, which can also be interpreted as the
available phase space increasing with increasing energy.

For discussion of the intermittency the N -site lattice
is divided into blocks of linear size L, and the number of
blocks M = (R/L)d. For each block the block-multiplicity
km (m = 1, 2, · · · , M) is defined as

km =
∑

i ∈ Bm

ni , (7)

where Bm denotes the block m. Note that with differ-
ent realizations the relationships between ni and Si may
change, while those between km and ni are always kept
constant.

Then, one proceeds to study how the factorial mo-
ments Fq depend on the block size L (or the number of
blocks M). The qth factorial moment is defined as

Fq(L) =
〈km(km − 1)(km − 2) · · · (km − q + 1)〉

〈km〉q . (8)

Due to the translational invariance of the Ising model, the
ensemble average of any quantity is equivalent for every
block. The average over blocks becomes redundant. The
correspondence in the multiparticle phenomena is the flat-
ness of the multiplicity density over the phase space, which
is valid in the central region of high-energy collisions.

Above the phase-transition temperature, the total mul-

tiplicity within a block 〈km〉 =
1
2
Ld. Around the phase-

transition temperature, one still has

〈km〉 ∼ 1
2
Ld � 1 , when L � 1 . (9)

The values of the factorial moments are then similar to
those of the standard moments,

Fq(L) ∼ Cq(L) =
〈(km)q〉
〈km〉q . (10)

As one approaches the phase-transition temperature,
the scale invariance of the second-order phase transition
implies the following renormalization of the block-spins
S̃m [3],

1
Ld

∑
i ∈ Bm

Si = Q(L)S̃m , (11)

where
Q(L) = L−(d−2+η)/2 , (12)

independent of the block-spin index m. The renormalized
block-spins S̃m behave the same as the spins Si and one
has 〈(

S̃m

)i
〉

. =
{

0 , for odd i ,
1 , for even i .

(13)

Then the factorial moments become [4]

Fq(L) ∼ Cq(L) =

〈
Ld∑
i=1

(ni)q

〉
〈

Ld∑
i=1

ni

〉q =

〈(
1 + Q(L)S̃m

)q〉
〈(

1 + Q(L)S̃m

)〉q

=

q∑
i=0

Cq
i Qi(L)

〈
S̃i

m

〉
q∑

j=0

Cq
j Qj(L)

〈
S̃m

〉j

=
[q/2]∑
i=0

Cq
2iQ2i(L) . (14)
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Again, the Z(2) symmetry is observed as the above ex-
pansion involving only the even power of Q(L). The other

choice of spin-down as particles, ni =
1
2
(1 − Si), leads to

the very same results. Explicitly, the first few moments
are given as

F2(L) = 1 + Q2(L) , (15)
F3(L) = 1 + 3Q2(L) , (16)
F4(L) = 1 + 6Q2(L) + Q4(L) , (17)
F5(L) = 1 + 10Q2(L) + 5Q4(L) . (18)

As can be clearly seen, the factorial moments do increase
as the block size L decreases. If the small difference be-
tween the factorial moments and the standard moments
is considered, the factorial moments should be corrected
as follows,

F2(L) = 1 + Q2(L) − 2
Ld

, (19)

F3(L) = 1 + 3Q2(L) − 6
Ld

[1 + Q2(L)] +
8

L2d
, (20)

F4(L) = 1 + 6Q2(L) + Q4(L) − 12
Ld

[1 + 3Q2(L)]

+
44
L2d

[1 + Q2(L)] − 48
L3d

, (21)

F5(L) = 1 + 10Q2(L) + 5Q4(L)

− 20
Ld

[1 + 6Q2(L) + Q4(L)]

+
140
L2d

[1 + 3Q2(L)]

−400
L3d

[1 + Q2(L)] +
384
L4d

. (22)

For L � 1, such corrections are negligible, as expected.
To keep only the first-order terms, one has

F2(L) ∼ 1 + Q2(L) = 1 +
1

Ld−2+η
, (23)

F3(L) ∼ 1 + 3Q2(L) = 1 +
3

Ld−2+η
, (24)

F4(L) ∼ 1 + 6Q2(L) = 1 +
6

Ld−2+η
, (25)

F5(L) ∼ 1 + 10Q2(L) = 1 +
10

Ld−2+η
. (26)

Obviously, in two dimensions the increase in factorial mo-
ments Fq with decreasing L is related to the nonvanishing
of the critical exponent η. In other dimensions the fac-
torial moments Fq increase with decreasing L, even with
η = 0. In the cases of the nearest-neighbor Ising model,
one has η = 0.25 for d = 2 and η = 0.05 for d = 3. As only
the properties of renormalization are utilized to obtain the
above results, they are ready to be applied to other spin
models with different values of η.

If the increase in Fq with decreasing L were directly
related to the critical behavior of the system, one would
expect a power-law dependence of Fq on L instead of the
formulas shown above. Also notice that the above results

are for the parameters N → ∞ and L >> 1. For larger
values of L, the increase in Fq with decreasing L becomes
slower. It can be anticipated that the effect of finite lattice-
sites N will enhance the intermittent behavior, which has
been shown in [4] numerically, and will be shown analyti-
cally in the special case of one dimension to be discussed
later.

In [5], another kind of realization has been suggested
to restore the seeming brokenness of Z(2) symmetry,

ni =
1
2

[1 + sign(S) Si] , (27)

where sign(S) denotes the sign of the total spin for each
configuration. It should be emphasized again that without
the external field, the lattice gas interpretation does not
break the Z(2) symmetry. The assignment of spin-up or
spin-down as particles gives the same results. Within the
above realization the total multiplicity for each configu-

ration has a minimum at
N

2
. The resulting multiplicity

distribution P (n) vanishes for n <
N

2
, which is inconsis-

tent with the experimental data.

B Analytical results for 1-d model

In the special case of a one-dimensional lattice, analytical
results can be obtained. Following the above-mentioned
procedures, one obtains the factorial moments Fq analyt-
ically as,

F2(L) = 1 − M

N
+ 2

M

N

(a − aN )
(1 − a)(1 + aN )

−2
M2

N2

a(1 − a
N
M )(1 − aN− N

M )
(1 − a)2 (1 + aN )

, (28)

F3(L) =
(

1 − 3
M

N
+ 2

M2

N2

)
+

(
6
M

N
− 12

M2

N2

)

× (a − aN )
(1 − a)(1 + aN )

−
(

6
M2

N2 − 12
M3

N3

)

×a(1 − a
N
M )(1 − aN− N

M )
(1 − a)2 (1 + aN )

, (29)

F4(L) =
(

1 − 6
M

N
+ 11

M2

N2 − 6
M3

N3

)

+
(

12
M

N
− 72

M2

N2 + 72
M3

N3 − 72
M3

N3

a

(1 − a)2

)

× (a − aN )
(1 − a)(1 + aN )

−
(

12
M2

N2 − 72
M3

N3 + 72
M4

N4

−72
M4

N4

a

(1 − a)2

)
a(1 − a

N
M )(1 − aN− N

M )
(1 − a)2 (1 + aN )

+
(

12
M2

N2 − 12
M3

N3

)
a

(1 − a)2

+12
M3

N3

(1 + a)(a − a
N
M )(a + aN− N

M )
(1 − a)3 (1 + aN )

, (30)
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F5(L) =
(

1 − 10
M

N
+ 35

M2

N2 − 50
M3

N3 + 24
M4

N4

)

+
(

20
M

N
− 240

M2

N2 + 760
M3

N3 − 480
M4

N4

)

× (a − aN )
(1 − a)(1 + aN )

−
(

20
M2

N2 − 240
M3

N3

+760
M4

N4 − 480
M5

N5

)
a(1 − a

N
M )(1 − aN− N

M )
(1 − a)2 (1 + aN )

−
(

360
M3

N3 − 1440
M4

N4

)
a(a − aN )

(1 − a)3 (1 + aN )

+
(

360
M4

N4 − 1440
M5

N5

)
a2(1 − a

N
M )(1 − aN− N

M )
(1 − a)4 (1 + aN )

+
(

60
M2

N2 − 300
M3

N3 + 240
M4

N4

)
a

(1 − a)2

+
(

60
M3

N3 − 240
M4

N4

)

× (1 + a)(a − a
N
M )(a + aN− N

M )
(1 − a)3 (1 + aN )

, (31)

where N = R the number of lattice sites, M = R/L =
N/L the number of blocks, and a = tanh(βε). The three
parameters of the model are chosen explicitly as N , M ,
and a. In the limit of zero temperature a → 1, where the
renormalization scheme works, the above results reduce to

F2(L) = 2 − 2
L

, (32)

F3(L) = 4 − 12
L

+
8
L2 , (33)

F4(L) = 7 − 48
L

+
83
L2 − 42

L3 , (34)

F5(L) = 11 − 140
L

+
535
L2 − 670

L3 +
264
L4 , (35)

which are similar to the results of a renormalization scheme
substituting Q(L) = 1. As can be seen from these formu-
las, the factorial moments Fq decrease, instead of increase,
with a decreasing L. This absence of intermittency is also
expected and is usually related to the absence of phase
transition in one dimension. However, it is interesting to
note that the intermittency does exist in one dimension as
the temperature deviates from zero. The increase in fac-
torial moments Fq with decreasing L can also be shown
analytically. In the limit of zero temperature, N → ∞ and

a → 1 are taken explicitly and L =
N

M
is kept finite. If

the temperature is set slightly higher, or explicitly a < 1
and aN → 0 in the limiting process, one would obtain the
following results instead:

F2(L) = 1 +
1
L

(
3a − 1
1 − a

)
− 1

L2

(
2a(1 − aL)
(1 − a)2

)
, (36)

F3(L) = 1 +
3
L

(
3a − 1
1 − a

)
+ O

(
1
L2

)
, (37)

F4(L) = 1 +
6
L

(
3a − 1
1 − a

)
+ O

(
1
L2

)
, (38)

Fig. 1. Factorial moments Fq(M), q = 2, 3, 4, 5, of (28-31)
on the lattice N = 1000 for various values of a: a a = 0.9,
b a = 0.99, and c a = 0.999

F5(L) = 1 +
10
L

(
3a − 1
1 − a

)
+ O

(
1
L2

)
. (39)

The factorial moments Fq do increase with a decreasing L.
It can be simply concluded that the intermittency in this
case has nothing to do with the critical behavior, although
the obtained formulas are very similar to those given by
the renormalization scheme, (23) to (26). In addition, the
finite size effect also enhances the intermittency, for which
the numerical results are shown in Figs. 1 and 2. Though

the M(=
N

L
)-dependence of Fq is similar to those ob-

served in experiments, it should be remembered that the

total multiplicity 〈n〉 =
N

2
is much too large and the

multiplicity distribution P (n) has a reflected symmetry
at n = 〈n〉, which is inconsistent with the experimental
data.
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Fig. 2. The same as Fig. 1 for a = 0.99 on different sizes of
lattices: a N = 1000, b N = 2000, and c N = 3000

C Total-spin as multiplicity

In [6] the naive realization of spin as multiplicity was stud-
ied, i.e.,

ni = Si . (40)

It should be noticed that such multiplicity is not positively
definite. The renormalization of the block-spins implies
the scale invariance of the standard moments Cq,

Cq(L) =

〈
Ld∑
i=1

(ni)q

〉
〈

Ld∑
i=1

ni

〉q =

〈(
Q(L)S̃α

)q〉
〈(

Q(L)S̃α

)〉q

=

〈(
S̃α

)q〉
〈(

S̃α

)〉q = Cq(L = 1) . (41)

As the total multiplicity 〈n〉 approaches closer around
zero, the differences between standard moments Cq and
factorial moments Fq cannot be neglected. The factorial
moments become

F2(L) = C2 − 1
〈n(L)〉 , (42)

F3(L) = C3 − 3C2

〈n(L)〉 +
2

〈n(L)〉2 , (43)

F4(L) = C4 − 6C3

〈n(L)〉 +
11C2

〈n(L)〉2 − 6
〈n(L)〉3 , (44)

F5(L) = C5 − 10C4

〈n(L)〉 +
35C3

〈n(L)〉2

− 50C2

〈n(L)〉3 +
24

〈n(L)〉4 , (45)

where 〈n(L)〉 = 〈n〉 L

N
=

〈n〉
M

is the block-multiplicity.
There is no intermittency in this case.

III Ising model with external field

In high-energy collisions the average number of particles
produced is small compared to the maximum number avail-
able. For example, in the p̄p collisions at

√
s = 540 GeV,

on the average there are only 40 particles produced. This
is a small number compared to the maximum number√

s/mπ ∼ 4000, considering only the phase space and en-
ergy conservation. Within the lattice gas interpretation,
introducing an external field is necessary if one wants to
simulate the production of a small number of particles on
a large lattice. The effect of the external field is to turn
the spins away from the direction defined as particles.

With an external magnetic field the Ising Hamiltonian
becomes

H = −ε
∑
〈i,j〉

SiSj + h
∑

i

Si . (46)

There are four parameters in this model: the lattice size
N , the dimension d, and the products βε and βh. As the
external field breaks the Z(2) symmetry, the direction of
spins to be defined as the existence of a particle becomes
relevant to the underlying physics. Since one is attempt-
ing to simulate the production of a few particles on a large
lattice, the appropriate direction to be chosen is obvious.
With a positive h in the above Hamiltonian, the multi-
plicity is still given by

ni =
1
2
(1 + Si) . (47)

A Analytical results for 1-d model

Again, the analytical results can be obtained in one di-
mension. In this case, there are only three parameters: N ,
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βε, and βh. The two parameters βε and βh are recombined
into a and c as follows:

a =
cosh(βh) − √

sinh2(βh) + e−4βε

cosh(βh) +
√

sinh2(βh) + e−4βε
, (48)

c =
sinh(βh)√

sinh2(βh) + e−4βε
. (49)

Using parameters N , a, and c, one expresses F2 explicitly
as

F2(M)

= 1 +
4aNc2

[(1 − c) + aN (1 + c)]2
− 2M

N

(1 + aN )
[(1 − c) + aN (1 + c)]

+
M

N

(1 − c)(1 + c)(1 + a)(1 − aN )(1 + aN )
[(1 − c) + aN (1 + c)]2 (1 − a)

− 2M2

N2

× (1 − c)(1 + c)a(1 − a
N
M )(1 − aN− N

M )(1 + aN )
[(1 − c) + aN (1 + c)]2 (1 − a)2

, (50)

where M =
N

L
. Without an external field, a = tanh(βε)

and c = 0, the above formula reduces to (28) correctly.
The analytical results for other Fq moments can also be
obtained accordingly. Another two useful parameters, to-
tal multiplicity 〈n〉 and dispersion D, can also be written
as

〈n〉=N

2
[(1 − c) + aN (1 + c)]

(1 + aN )
, (51)

D≡〈
n2〉 − 〈n〉2 (52)

=N2 c2 aN

(1 + aN )2

+
N

4
(1 − c)(1 + c)

(1 + a)(1 − aN )
(1 − a)(1 + aN )

. (53)

The three parameters of the model can be chosen from
any one of the sets (N, βε, βh), (N, a, c), and (N, 〈n〉, D).
In discussing the particle production processes, the last
set of parameters is preferred, since the total multiplicity
〈n〉 and dispersion D can be taken from the experimental
data directly.

With these analytical expressions, the infinite-lattice
limit N → ∞ can be discussed unambiguously. There
are two different limits which should be distinguished: the
thermodynamic limit and the continuum limit. The ther-
modynamic limit is well known in statistical mechanics as
the limit of infinite lattice sites with the parameters in the
Hamiltonian held fixed, in this case βε and βh. The con-
tinuum limit is understood as the limit of infinite lattice
sites with the physical parameters held fixed, in this case
the average multiplicity 〈n〉 and dispersion D.

In the thermodynamic limit the two parameters βε and
βh (or equivalently a and c) are fixed when N approaches
infinity. The second factorial moment F2 can be rewritten
as

F2(M)=1 − M

N

2
(1 − c)

+
M

N

(1 + c)(1 + a)
(1 − c)(1 − a)

Fig. 3. Factorial moment F2(M) of (50) with fixed a = 0.86
and c = 0.92 on different sizes of lattices: the solid line for
N = 1000, the long-dashed line for N = 3000, the dashed line
for N = 3000, and the dotted line for N = 4000

Fig. 4. The same as Fig. 3 with fixed 〈n〉 = 40 and D = 500

−2M2

N2

(1 + c)
(1 − c)

a(1 − a
N
M )

(1 − a)2
+ O

(
aN

)
. (54)

It can be seen from the formula that in the limit aN → 0,

the factorial moments Fq scale with
M

N
. If one plots Fq

vs. M as the experimental data shows, the increase in Fq

with an increasing M will be slower as N becomes larger.
The numerical results for different N are shown in Fig. 3.
From this scaled property it can be simply concluded that
the intermittency does not survive in the thermodynamic
limit. Also it should be noted that in this limit the total
multiplicity 〈n〉 diverges as N and the dispersion D as N2.

In the continuum limit the two parameters 〈n〉 and
D are fixed in the limit N → ∞. The two parameters a
and c are changing accordingly as N increases. Numeri-
cal results for various values of N are shown in Fig. 4, to
be contrasted with Fig. 3. In this case the intermittency
not only survives but enhances, which can also be shown
explicitly. In the limit N → ∞, one has

a → D − 〈n〉
D + 〈n〉 and c → 1 . (55)
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Fig. 5. Factorial moment Fq(M), q = 2, 3, 4, 5, of (56–59) in
the continuum limit for 〈n〉 = 40 and D = 500

In this case, (28) can also be explicitly written as

F2(M) = 1 + M

(
D − 〈n〉

〈n〉2
)

. (56)

The first few moments Fq are given as [7], see Fig. 5,

F3(M)=1 + 3M

(
D − 〈n〉

〈n〉2
)

+
3
2
M2

(
D − 〈n〉

〈n〉2
)2

, (57)

F4(M)=1 + 6M

(
D − 〈n〉

〈n〉2
)

+ 9M2
(

D − 〈n〉
〈n〉2

)2

+3M3
(

D − 〈n〉
〈n〉2

)3

, (58)

F5(M)=1 + 10M

(
D − 〈n〉

〈n〉2
)

+ 30M2
(

D − 〈n〉
〈n〉2

)2

+30M3
(

D − 〈n〉
〈n〉2

)3

+
15
2

M4
(

D − 〈n〉
〈n〉2

)4

. (59)

In general, all the factorial moments can be written ex-
plicitly as

Fq(M)=1 +
q−1∑
i=1

M i (q − 1)! q!
2i i! (q − i − 1)! (q − i)!

×
(

D − 〈n〉
〈n〉2

)i

. (60)

It is also noted that the multiplicity distributions P (n)
thus obtained are very similar to the widely used negative
binomial distributions [7].

It should be noted that in the case of a one-dimensional
lattice there are three scales: N , L, and M , related by N =

M · L. In this section the limits N → ∞ and L → ∞ are
taken, with M kept finite; while in the previous section the
appropriate limits were taken by N → ∞ and M → ∞,
with L kept finite. Since the formulas in both sections are
obtained analytically, they are exact for any values of N ,
L, and M and can be used to demonstrate these two kinds
of limits unambiguously.

B In higher dimensions

The above results are ready to be extended to higher di-
mensions d ≥ 2. The intermittency vanishes in the ther-
modynamic limit and survives in the continuum limit. In
the latter the factorial moments are given by the same
formulas, (60), in one dimension. The simple reasoning
is as follows. To keep the physical parameters 〈n〉 and D
fixed at finite values in the limit N → ∞, the system must
be decoupled into one-dimensional subsystems.

To keep the parameter 〈n〉 finite in the infinite-N limit,
most of the spins are pointed in the down direction. There
is only a finite number of spin-ups on an infinite lattice.
Even with the help of an external field, the system has
to be at zero temperature, T = 0, to have a negligible
fraction of spin-ups.

To keep the parameter D finite in the limit N → ∞,
the system has to be at the critical temperature T = Tc. In
the multiparticle production of high-energy collisions, the
large fluctuations are observed as D ∝ 〈n〉2, in contrast
to the conventional statistical fluctuations D ∝ 〈n〉. In
the limit N → ∞, such large fluctuations imply that the
corresponding spin system has nonvanishing long-range
correlations, i.e., the critical behavior is expected.

With these two requirements, the system must be T =
Tc = 0. If one begins with an anisotropic Ising model in a
higher dimension d ≥ 2, such requirements imply that all
of the interactions must vanish except for those in one di-
rection. The lattice is then decoupled into one-dimensional
sublattices. The factorial moments Fq(M) can be easily
obtained from convolution. The analytical expression is
the same as in the case of one dimension, (60).

IV Discussion and conclusion

The Ising model provides a simple tool to study the fluc-
tuations in multiparticle production. With a lattice-gas
interpretation, the model does show fluctuations similar
to what has been observed in experimental data. In high-
energy collisions only a few particles are produced over a
large available phase space. The dispersion is large. The
factorial moments increase with decreasing block size. To
reproduce these desired features from the Ising model, the
parameters of the Hamiltonian should be chosen appropri-
ately. The ferromagnetic interaction and the external field
are favorable to evoke such features in the simulation.

Given the analytical results in one dimension, many
puzzling situations can be clarified. On the infinite lat-
tice the intermittency survives in the continuum limit but
vanishes in the thermodynamic limit, while the finite size
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effect does make the factorial moments increase with a
decreasing block size up to a certain level.

In higher dimensions the intermittency exists only in
the limit where the system can be decoupled into one-
dimensional chains. The finite size effect will enhance the
intermittent behavior, as shown both from the renormal-
ization scheme and the numerical work. One may simply
conclude that, discussed in this paper, onset of intermit-
tency in the Ising model is not directly related to the phase
transition, but more likely to the characteristic of decou-
pling into one-dimensional subsystems.
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